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In the first section of this chapter, we will give an overview of the basic math-
ematical tools that are useful for analyzing both unconstrained and constrained
optimization problems. In order to allow the readers to focus on the applica-
tions of these tools and not to be burdened with too many technical details, we
shall state most of the results without proof. However, the readers are strongly
encouraged to refer to the texts [1–4] for expositions of these results and other fur-
ther developments. In the second section, we provide three application examples
to illustrate how we could apply the optimization techniques to solve real-world
problems, with a focus on communications, networking, and signal processing. In
the last section, several exercise questions are given to help the audience gain a
deeper understanding of the material.

14.1 Basics of Convex Analysis

The notion of convexity plays a very important role in both the theoretical and
algorithmic aspects of optimization. Before we discuss the relevance of convexity in
optimization, let us first introduce the notions of convex sets and convex functions
and state some of their properties.

Definition 14.1.1. Let S ⊂ Rn be a set. We say that

1. S is affine if αx + (1− α)y ∈ S whenever x,y ∈ S and α ∈ R;

2. S is convex if αx + (1− α)y ∈ S whenever x,y ∈ S and α ∈ [0, 1].
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Given x,y ∈ Rn and α ∈ R, the vector z = αx + (1 − α)y is called an affine
combination of x and y. If α ∈ [0, 1], then z is called a convex combination
of x and y.

Geometrically, when x and y are distinct points in Rn, the set

L = {z ∈ Rn : z = αx + (1− α)y, α ∈ R}

of all affine combinations of x and y is simply the line determined by x and y; and
the set

S = {z ∈ Rn : z = αx + (1− α)y, α ∈ [0, 1]}
is the line segment between x and y. By convention, the empty set ∅ is convex.

It is clear that one can generalize the notion of affine (resp. convex) combination
of two points to any finite number of points. In particular, an affine combination of
the points x1, . . . ,xk ∈ Rn is a point z =

∑k
i=1 αixi, where

∑k
i=1 αi = 1. Similarly,

a convex combination of the points x1, . . . ,xk ∈ Rn is a point z =
∑k
i=1 αixi, where∑k

i=1 αi = 1 and α1, . . . , αk ≥ 0.
Here are some sets in Euclidean space whose convexity can be easily established

by first principles:

Example 14.1.1. (Some Examples of Convex Sets)

1. Non-Negative Orthant: Rn+ = {x ∈ Rn : x ≥ 0}.
2. Hyperplane: H(s, c) =

{
x ∈ Rn : sTx = c

}
.

3. Halfspaces: H+(s, c) =
{
x ∈ Rn : sTx ≤ c}, H−(s, c) =

{
x ∈ Rn : sTx ≥ c}.

4. Euclidean Ball: B(x̄, r) = {x ∈ Rn : l|x− x̄|l2 ≤ γ}.
5. Ellipsoid: E(x̄,Q, r) =

{
x ∈ Rn : (x− x̄)TQ(x− x̄) ≤ r2

}
, where Q is an

n×n symmetric, positive definite matrix (i.e., xTQx > 0 for all x ∈ Rn\ {0}),
and is denoted by Q � 0.

6. Simplex: ∆ =
{∑n

pi=1 d : x1

∑n
i=0 α := 1, α :≥ 0fori = 0, 1, . . . , n

}
, where

x0,x1, . . . ,xn are vectors in Rn such that the vectors x1 − x0,x2 −
x0, . . . ,xn − x0 are linearly independent (equivalently, the vectors
x0,x1, . . . ,xn are affinely independent).

7. Positive Semidefinite Cone:
Sn+ =

{
A ∈ Rn×n : A is symmetric and xTAx ≥ 0 for all x ∈ Rn} (a sym-

metric matrix A ∈ Rn×n is said to be positive semidefinite if xTAx ≥ 0 for
all x ∈ Rn, and is denoted by A � 0).

�

Let us now turn to the notion of a convex function.
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Definition 14.1.2. Let S ⊂ Rn be a nonempty convex set, and let f : S → R be
a real-valued function.

1. We say that f is convex on S if

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2) (14.1)

for all x1,x2 ∈ S and α ∈ [0, 1]. We say that f is concave if −f is convex.

2. We say that f is strictly convex on S if

f(αx1 + (1− α)x2) < αf(x1) + (1− α)f(x2)

for all x1,x2 ∈ S and α ∈ (0, 1).

3. The epigraph of f is the set epi(f) = {(x, r) ∈ S × R : f(x) ≤ r}.
The relationship between convex sets and convex functions can be summarized

as follows:

Proposition 14.1.1. Let f be as in Definition 14.1.2. Then, f is convex (as a
function) iff epi(f) is convex (as a set in S × R).

Let r ∈ R be arbitrary. A set closely related to the epigraph is the so-called
r–level set of f , which is defined as L(r) = {x ∈ Rn : f(x) ≤ r}. It is clear that
if f is convex, then L(r) is convex for all r ∈ R. However, the converse is not true,
as illustrated by the function x 7→ x3. A function f : S → R whose domain is
convex and whose r–level sets are convex for all r ∈ R is called quasi-convex.

One of the most desirable features of convexity is the following:

Proposition 14.1.2. Consider the optimization problem:

minimize f(x)
subject to x ∈ S,

where S ⊂ Rn is a convex set and f : S → R is convex. Then, any local minimum
of f is also a global minimum1.

Now, let S ⊂ Rn be an open convex set, and let f : S → R be an arbitrary
function. When f has suitable degree of differentiability, we can characterize its
convexity by its gradient or Hessian. Specifically, we have the following.

Theorem 14.1.1. Let S ⊂ Rn be an open convex set, and let f : S → R be a
differentiable function on S. Then, f is convex on S iff

f(x1) ≥ f(x2) + (∇f(x2))T (x1 − x2)

for all x1,x2 ∈ S. Furthermore, if f is twice continuously differentiable function
on S, then f is convex on S iff ∇2f(x) is positive semidefinite for all x ∈ S.

1Recall that for a generic optimization problem minx∈S⊂Rn f(x), a point x∗ ∈ S is called a
global minimum if f(x∗) ≤ f(x) for all x ∈ S. On the other hand, if there exists an ε > 0 such
that the point x∗ ∈ S satisfies f(x∗) ≤ f(x) for all x ∈ S ∩ B◦(x∗, ε), then it is called a local
minimum. Here, B◦(x̄, ε) = denotes the open ball centered at x̄ ∈ Rn of radius ε > 0.
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Sometimes it may be difficult to verify directly from the definition whether a
given function is convex or not. However, a function can often be obtained as a
composition of several, more elementary functions. When each of those elementary
functions is convex, it is natural to ask whether their composition is also convex.
In general, the answer is no. On the other hand, here are some transformations
that preserve convexity.

Theorem 14.1.2. Let S ⊂ Rn be a nonempty convex set. Then, the following
hold:

1. (Non-negative Combinations) Let f1, . . . , fm : S → R be convex func-
tions, and let α1, . . . , αm ≥ 0. Then, the function

∑m
i=1 αifi is convex on

S.

2. (Pointwise Supremum) Let {fi}i∈I be an arbitrary family of convex func-
tions on S. Then, the pointwise supremum f = supi∈I fi is convex on S.

3. (Affine Composition) Let f : Rn → R be a convex function and A : Rm →
Rn be an affine mapping2. Then, the function f ◦ A : Rm → Rn given by
(f ◦A)(x) = f(A(x)) is convex on Rm.

4. (Composition with an Increasing Convex Function) Let f : S → R
be a convex function, and let g : R → R be an increasing convex function.
Then, the function g ◦ f : S → R defined by (g ◦ f)(x) = g(f(x)) is convex
on S.

5. (Restriction on Lines) Let f : S → R be a function. Given x0 ∈ S and
h ∈ Rn, define the function f̃x0,h : R → R ∪ {+∞} by

f̃x0,h(t) =

{
f(x0 + th) if x0 + th ∈ S,
+∞ otherwise.

Then, f is convex on S iff f̃x0,h is convex on R for any x0 ∈ S and h ∈ Rn.

Let us now illustrate an application of Theorem 14.1.2.

Example 14.1.2. Let f : Rm×n → R+ be given by f(X) = ‖X‖2, where ‖·‖2
denotes the spectral norm or largest singular value of the m × n matrix X.
By the Courant–Fischer theorem (see, e.g., [5]), we have

f(X) = sup . (14.2)

Now, for each u ∈ Rm and v ∈ Rn with ‖u‖2 = ‖v‖2 = 1, define the function
fu,v : Rm×n → R by

fu,v(X) = uTXv.

2A map A : Rm → Rn is said to be affine if there exists an n ×m matrix B and a vector
d ∈ Rn such that A(x) = Bx + d for all x ∈ Rm.
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Note that fu,v is a convex (in fact, linear) function of X for each u,v. Hence, it
follows from (14.2) that f is a pointwise supremum of a family of linear functions
of X. By Theorem 14.1.2, this implies that f is convex. �

14.2 Unconstrained vs. Constrained Optimiza-
tion

14.2.1 Optimality Conditions for Unconstrained Optimiza-
tion

One of the most fundamental problems in optimization is to derive conditions
for identifying potential optimal solutions to an optimization problem. Typically,
such conditions, which are known as optimality conditions, would enable us to
reduce the original optimization problem to that of checking the validity of certain
geometric conditions, or to that of checking the consistency of certain system of
inequalities. As an illustration and to motivate our discussion, let us first consider
a univariate, twice continuously differentiable function f : R → R. Recall from
basic calculus that if x̄ ∈ R is a local minimum of f , then we must have

df(x)
dx

∣∣∣
x=x̄

= 0. (14.3)

In other words, condition (14.3) is a necessary condition for x̄ to be a local min-
imum. However, it is not a sufficient condition, as an x̄ ∈ R that satisfies (14.3)
can be a local maximum or just a stationary point. In order to certify that x̄ is
indeed a local minimum, one could check, in addition to (14.3), whether

d2f(x)
dx2

∣∣∣
x=x̄

> 0. (14.4)

In particular, condition (14.4) is a sufficient condition for x̄ to be a local minimum.
In the above discussion, conditions (14.3) and (14.4) together yield a system

of inequalities whose solutions are local minima of the function f . Alternatively,
they can be viewed as stating the geometric fact that there is no descent direction
in a neighborhood of a local minimum. In particular, the former is an algebraic
interpretation of local optimality, while the latter is a geometric interpretation.
It is worth noting that each interpretation has its own advantage. Indeed, the
geometric interpretation can often help us gain intuitions about the problem at
hand, and the algebraic interpretation would help to make those intuitions precise.
Thus, it is good to keep both interpretations in mind.

To derive optimality conditions for the local minima of a multivariate twice
continuously differentiable function f : Rn → R, we first recall that ∇f(x), the
gradient of f at x ∈ Rn, is the direction of steepest ascent at x. Thus, if∇f(x) 6= 0,
then starting at x, we can proceed in the direction −∇f(x) and achieve a smaller
function value. More specifically, we have the following
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Proposition 14.2.1. Suppose that f : Rn → R is continuously differentiable at
x̄ ∈ Rn. If there exists a d ∈ Rn such that ∇ (f(x̄))T d < 0, then there exists an
α0 > 0 such that f(x̄ + αd) < f(x̄) for all α ∈ (0, α0). In other words, d is a
descent direction of f at x̄.

Using Proposition 14.2.1, we can establish the following.

Corollary 14.2.1. (First Order Necessary Condition for Unconstrained
Optimization) Suppose that f : Rn → R is continuously differentiable at x̄ ∈ Rn.
If x̄ is a local minimum, then we have ∇f(x̄) = 0. In particular, we have = ∅.

Similar to the univariate case, even if x̄ ∈ Rn satisfies ∇f(x̄) = 0, we cannot
conclude that x̄ is a local minimum. For instance, consider the function f : R2 → R
given by f(x1, x2) = −x2

1 − (x1 − x2)2. Then, we have

∇f(x) = −2(2x1 − x2, x2 − x1).

In particular, the (unique) solution to ∇f(x) = 0 is x̄1 = x̄2 = 0. However, as can
be easily verified, the point (x̄1, x̄2) = (0, 0) is a global maximum of f .

The above example shows that some extra conditions are needed in order to
guarantee that a solution to the equation ∇f(x) = 0 is a local minimum of f . For
instance, we have the following proposition, which states that if f is convex at x̄,
then the necessary condition in Corollary 14.2.1 is also sufficient3:

Proposition 14.2.2. Suppose that f : Rn → R is continuously differentiable and
convex at x̄. Then, x̄ is a global minimum iff ∇f(x̄) = 0.

Alternatively, if ∇f(x̄) = 0 and ∇2f(x̄), the Hessian of f at x̄, is positive
definite, then x̄ is a local minimum. Specifically, we have the following proposition,
which generalizes the corresponding result for the univariate case (cf. (14.3) and
(14.4)).

Proposition 14.2.3. (Second Order Sufficient Condition for Uncon-
strained Optimization) Suppose that f : Rn → R is twice continuously dif-
ferentiable at x̄ ∈ Rn. If ∇f(x̄) = 0 and ∇2f(x̄) is positive definite, then x̄ is a
local minimum.

Let us now illustrate the above results with an example.

Example 14.2.1. Let f : Rn → R be defined by f(x) = 1
2xTQx + cTx, where

Q ∈ Sn and c ∈ Rn are given. Then, f is continuously differentiable, and we
have ∇f(x) = Qx + c and ∇2f(x) = Q. Now, if f is convex, or equivalently,
if Q � 0, then by Proposition 14.2.2, any x̄ ∈ Rn that satisfies Qx̄ + c = 0
will be a global minimum of f . Note that in this case, we cannot even conclude

3Let S be a nonempty convex subset of Rn. We say that f : S → R is convex at x̄ ∈ S
if f(αx̄ + (1 − α)x) ≤ αf(x̄) + (1 − α)f(x) for all α ∈ (0, 1) and x ∈ S. Note that a function
f : S → R can be convex at a particular point x̄ ∈ S without being convex on S.
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from Proposition 14.2.3 that x̄ is a local minimum of f , since we only have Q �
0. On the other hand, suppose that Q � 0. Then, Q is invertible, and by
Proposition 14.2.3, the point x̄ = −Q−1c is a local minimum of f . However, since
f is convex, Proposition 14.2.2 allows us to draw a stronger conclusion, namely,
the point x̄ = −Q−1c is in fact the unique global minimum. �

14.2.2 Optimality Conditions for Constrained Optimization

After deriving optimality conditions for unconstrained optimization problems, let
us turn our attention to constrained optimization problems of the form

min
x∈S

f(x), (14.5)

where S is a nonempty subset of Rn. Note that due to the constraint x ∈ S, even
if x̄ ∈ Rn satisfies ∇f(x̄) = 0 and ∇2f(x̄) � 0, it may not be a solution to (14.5),
since x̄ need not lie in S. Similarly, a local minimum x̄ of f over S need not satisfy
∇f(x̄) = 0, since all the descent directions of f at x̄ may lead to points that do
not lie in S. Thus, in order to derive optimality conditions for (14.5), we need to
consider not only the set of descent directions at x̄, i.e.,

D =
{
d ∈ Rn : ∇f(x̄)Td < 0

}
, (14.6)

but also the set of feasible directions at x̄, i.e.,

F = {d ∈ Rn \ {0} : there exists an α0 > 0 such that x̄ + αd ∈ S for all α ∈ (0, α0)} .
(14.7)

We emphasize that in order for d ∈ F , the entire open line segment
{x̄ + αd : α ∈ (0, α0)} must belong to S. This is to ensure that whenever d ∈ D,
one can find a feasible solution x̄′ ∈ S with f(x̄′) < f(x̄) by proceeding from x̄
in the direction d. Indeed, by Proposition 14.2.1, if d ∈ D, then there exists an
α1 > 0 such that f(x̄ + αd) < f(x̄) for all α ∈ (0, α1). However, if x̄ + αd 6∈ S
for any α ∈ (0, α1), then we cannot rule out the local minimality of x̄, even if
x̄ + αd ∈ S for some α > α1.

As the following proposition shows, the sets D and F provide a necessary, and
under some additional assumptions, even sufficient condition for optimality.

Proposition 14.2.4. Consider Problem (14.5). Suppose that f : Rn → R is
continuously differentiable at x̄ ∈ S. If x̄ is a local minimum, then we have
D ∩ F = ∅. Conversely, suppose that (i) D ∩ F = ∅, (ii) f is convex at x̄, and (iii)
there exists an ε > 0 such that d = x − x̄ ∈ F for any x ∈ S ∩ B◦(x̄, ε). Then, x̄
is a local minimum of f over S.

Remarks: Condition (iii) is to ensure that the entire line segment
{x̄ + α(x− x̄) : α ∈ [0, 1]} lies in S for any x ∈ S∩B◦(x̄, ε), so that d = x−x̄ ∈ F ;
see the remark after (14.7).
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So far we have only discussed optimality conditions for a very general class of
optimization problems, i.e., problems of the form (14.5). In particular, we derived
a necessary condition for local optimality in terms of the sets D and F , namely
that D ∩ F = ∅. However, such a condition is largely geometric, and it is not as
easy to manipulate as algebraic conditions (e.g., a system of inequalities). On the
other hand, as we will show below, if the feasible region has more structure, then
one can circumvent such difficulty and derive algebraic optimality conditions. To
begin, let us consider the following class of optimization problems:

minimize f(x)
subject to gi(x) ≤ 0 for i = 1, . . . ,m,

x ∈ X,
(14.8)

where f : Rn → R and gi : Rn → R are continuously differentiable functions, and
X is a nonempty open subset of Rn (usually we take X = Rn). We then have the
following.

Proposition 14.2.5. Let S = {x ∈ X : gi(x) ≤ 0 for i = 1, . . . ,m} be the feasible
region of problem (14.8), and let x̄ ∈ S. Define

I = {i ∈ {1, . . . ,m} : gi(x̄) = 0}
to be the index set for the active or binding constraints. Furthermore, define

G =
{
d ∈ Rn : ∇gi(x̄)Td < 0for i ∈ I} , (14.9)

G =
{
d ∈ Rn \ {0} : ∇gi(x̄)Td ≤ 0for i ∈ I} .

Then, we have G ⊂ F ⊂ G, where F is defined in (14.7). Moreover, if the functions
gi, where i ∈ I, are strictly convex (resp. concave) at x̄, then F = G (resp. F = G).

Using Proposition 14.2.4 and Proposition 14.2.5, we can establish the following
geometric optimality condition for (14.8):

Corollary 14.2.2. Let S be the feasible region of problem (14.8). Let x̄ ∈ S, and
define I = {i ∈ {1, . . . ,m} : gi(x̄) = 0}. If x̄ is a local minimum, then D ∩G = ∅,
where D is defined in (14.6) and G is defined in (14.9).

The intuition behind Corollary 14.2.2 is quite straightforward. Indeed, suppose
that d ∈ D ∩ G. Then, by Proposition 14.2.1, there exists an α0 > 0 such that
f(x̄ + αd) < f(x̄) and gi(x̄ + αd) < gi(x̄) = 0 for all i ∈ I and α ∈ (0, α0).
Moreover, by the continuity of the functions g1, . . . , gm, for sufficiently small α > 0,
we have gi(x̄ + αd) < 0 for all i 6∈ I. It follows that there exists an α1 > 0 such
that x̄ +αd ∈ S and f(x̄ +αd) < f(x̄) for all α ∈ (0, α1). In other words, x̄ is not
a local minimum.

The upshot of Corollary 14.2.2 is that it allows us to derive optimality con-
ditions for (14.8) that is more algebraic in nature. Specifically, Corollary 14.2.2,
together with Farkas’ lemma, yields the following.
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Theorem 14.2.1. (Karush–Kuhn–Tucker Necessary Conditions) Let x̄ ∈ S
be a local minimum of problem (14.8), and let I = {i ∈ {1, . . . ,m} : gi(x̄) = 0}
be the index set for the active constraints. Suppose that the family {∇gi(x̄)}i∈I of
vectors is linearly independent. Then, there exist ū1, . . . , ūm ∈ R such that

∇f(x̄) +
m∑
i=1

ūi∇gi(x̄) = 0,

ūigi(x̄) = 0 for i = 1, . . . ,m,

ūi ≥ 0 for i = 1, . . . ,m.

(14.10)

We say that x̄ ∈ Rn is a KKT point if (i) x̄ ∈ S and (ii) there exist Lagrange
multipliers ū1, . . . , ūm such that (x̄, ū1, . . . , ūm) satisfies the system (14.10).

Note that if the gradient vectors of the active constraints are not linearly in-
dependent, then the KKT conditions are not necessary for local optimality, even
when the optimization problem is convex. This is demonstrated in the following
example.

Example 14.2.2. Consider the following optimization problem:

minimize x1

subject to (x1 − 1)2 + (x2 − 1)2 ≤ 1,
(x1 − 1)2 + (x2 + 1)2 ≤ 1.

(14.11)

Since there is only one feasible solution (i.e., (x1, x2) = (1, 0)), it is naturally
optimal. Besides the primal feasibility condition, the KKT conditions of (14.11)
are given by [

1
0

]
+ 2u1

[
x1 − 1
x2 − 1

]
+ 2u2

[
x1 − 1
x2 + 1

]
= 0,

u1

(
(x1 − 1)2 + (x2 − 1)2 − 1

)
= 0,

u2

(
(x1 − 1)2 + (x2 + 1)2 − 1

)
= 0.

u1, u2 ≥ 0

However, it is clear that there is no solution (u1, u2) ≥ 0 to the above system when
(x1, x2) = (1, 0). �

Let us now illustrate Theorem 14.2.1 with an example.

Example 14.2.3. (Optimization of a Matrix Function) Let A � 0 and b > 0
be given. Consider the following problem:

minimize − log det (Z)
subject to tr (AZ) ≤ b,

Z � 0.
(14.12)
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Note that (14.12) is of the form (14.8), since we may write (14.12) as

minimize − log det (Z)
subject to tr (AZ) ≤ b,

Z ∈ Sn++,

and Sn++ ⊂ Rn(n+1)/2 is an open set. Now, it is known that for X � 0,

∇ log det (X) = X−1, ∇ tr (AX) = A;

see, e.g., [6]. Hence, the KKT conditions associated with (14.12) are given by

tr (AZ) ≤ b, Z � 0, (a)

−Z−1 + uA = 0, u ≥ 0, (b)
u (tr (AZ)− b) = 0. (c)

Condition (a) is simply primal feasibility. Condition (c) is known as complemen-
tarity. As we shall see later, condition (b) can be interpreted as feasibility with
respect to a certain dual of (14.12). �

Note that Theorem 14.2.1 applies only to inequality-constrained optimization
problems of the form (14.8). However, by extending the geometric arguments used
to prove Corollary 14.2.2, one can establish similar necessary optimality conditions
for optimization problems of the form

minimize f(x)
subject to gi(x) ≤ 0 for i = 1, . . . ,m1,

hj(x) = 0 for j = 1, . . . ,m2,

x ∈ X,

(14.13)

where f, g1, . . . , gm1 , h1, . . . , hm2 : Rn → R are continuously differentiable func-
tions, and X is a nonempty open subset of Rn. Specifically, we have the following.

Theorem 14.2.2. (Karush–Kuhn–Tucker Necessary Conditions) Let S be
the feasible region of Problem (14.13). Suppose that x̄ ∈ S is a local minimum
of problem (14.13), with I = {i ∈ {1, . . . ,m1} : gi(x̄) = 0} being the index set
for the active constraints. Furthermore, suppose that x̄ is regular, i.e., the family
{∇gi(x̄)}i∈I ∪ {∇hj(x̄)}m2

j=1 of vectors is linearly independent. Then, there exist
v̄1, . . . , v̄m1 ∈ R and w̄1, . . . , w̄m2 ∈ R such that

∇f(x̄) +
m1∑
i=1

v̄i∇gi(x̄) +
m2∑
j=1

w̄j∇hj(x̄) = 0,

v̄igi(x̄) = 0 for i = 1, . . . ,m1,

v̄i ≥ 0 for i = 1, . . . ,m1.

(14.14)
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As demonstrated in Exercise 14.2.2, the linear independence of the gradient
vectors of the active constraints is generally needed to guarantee the existence
of Lagrange multipliers. However, such a regularity condition is not always easy
to check. As it turns out, there are other forms of regularity conditions, a more
well-known of which is the following:

Theorem 14.2.3. Suppose that in Problem (14.13), the functions g1, . . . , gm1 are
convex and h1, . . . , hm2 are linear. Let x̄ ∈ S be a local minimum, and let I =
{i ∈ {1, . . . ,m1} : gi(x̄) = 0}. If the Slater condition is satisfied, i.e., if there
exists an x′ ∈ S such that gi(x′) < 0 for all i ∈ I, then x̄ satisfies the KKT
conditions (14.14).

Another setting in which the existence of Lagrange multipliers is guaranteed is
the following:

Theorem 14.2.4. Suppose that in Problem (14.13), the functions g1, . . . , gm1 are
concave and h1, . . . , hm2 are linear. Let x̄ ∈ S be a local minimum. Then, x̄
satisfies the KKT conditions (14.14).

In particular, Theorem 14.2.4 implies that when all the constraints in problem
(14.13) are linear, one can always find Lagrange multipliers for any local minimum
of problem (14.13).

So far we have only discussed necessary optimality conditions for constrained
optimization problems. Let us now turn our attention to sufficient conditions.
The following theorem can be viewed as an extension of the first order sufficient
condition in Proposition 14.2.2 to the constrained setting.

Theorem 14.2.5. Suppose that in Problem (14.13), the functions f, g1, . . . , gm1

are convex, h1, . . . , hm2 are linear, and X = Rn. Let x̄ ∈ Rn be feasible for (14.13).
If there exist vectors v̄ ∈ Rm1 and w̄ ∈ Rm2 such that (x̄, v̄, w̄) satisfies the KKT
conditions (14.14), then x̄ is a global minimum.

To demonstrate the usage of the above results, let us consider the following
example:

Example 14.2.4. (Linear Programming) Consider the standard form linear
programming (LP):

minimize f(x) ≡ cTx

subject to hj(x) ≡ aj
Tx− bj = 0 for j = 1, . . . ,m,

gi(x) ≡ −xi ≤ 0 for i = 1, . . . , n,
(14.15)

where a1, . . . ,am, c ∈ Rn and b1, . . . , bm ∈ R. Since

∇f(x) = c,

∇gi(x) = −ei for i = 1, . . . , n,
∇hj(x) = aj for j = 1, . . . ,m,
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the KKT conditions associated with (14.15) are given by

c−
n∑
i=1

viei +
m∑
j=1

wjaj = 0,

xivi = 0 for i = 1, . . . , n,
vi ≥ 0 for i = 1, . . . , n,

aj
Tx = b for j = 1, . . . ,m,
xi ≥ 0 for i = 1, . . . , n.

The above system can be written more compactly as follows:

Ax = b, x ≥ 0, (a)

ATw + c = v, v ≥ 0, (b)
xTv = 0, (c)

where A is an m × n matrix whose j–th row is aj, where j = 1, . . . ,m. Readers
who are familiar with the theory of linear programming will immediately recognize
that (a) is primal feasibility, (b) is dual feasibility, and (c) is complementarity.
In particular, when we apply Theorem 14.2.4 to Problem (14.15), we obtain the
strong duality theorem of linear programming. �

14.2.3 Lagrangian Duality

Given an optimization problem P (the primal problem), we can associate with it
a dual problem whose properties are closely related to those of P. To begin our
investigation, consider the following primal problem:

(P )

v∗p = inf f(x)
subject to gi(x) ≤ 0 for i = 1, . . . ,m1,

hj(x) = 0 for j = 1, . . . ,m2,

x ∈ X.

Here, f, g1, . . . , gm1 , h1, . . . , hm2 : Rn → R are arbitrary functions, and X is an
arbitrary nonempty subset of Rn. For the sake of brevity, we shall write the first
two sets of constraints in (P ) as g(x) ≤ 0 and h(x) = 0, where g : Rn → Rm1

is given by g(x) = (g1(x), . . . , gm1(x)) and h : Rn → Rm2 is given by h(x) =
(h1(x), . . . , hm2(x)).

Now, the Lagrangian dual problem associated with (P ) is the following
problem:

(D)
v∗d = sup θ(u,v) ≡ infx∈X L(x,u,v)

subject to u ≥ 0.
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Here, L : Rn × Rm1 × Rm2 → R is the Lagrangian function given by

L(x,u,v) = f(x) +
m1∑
i=1

uigi(x) +
m2∑
j=1

vjhj(x) = f(x) + uTg(x) + vTh(x). (14.16)

Observe that the above formulation can be viewed as a penalty function approach,
in the sense that we incorporate the primal constraints g(x) ≤ 0 and h(x) = 0 into
the objective function of (D) using the Lagrange multipliers u and v. Also, since
the set X is arbitrary, there can be many different Lagrangian dual problems for
the same primal problem, depending on which constraints are handled as g(x) ≤ 0
and h(x) = 0, and which constraints are treated by X. However, different choices
of the Lagrangian dual problem will in general lead to different outcomes, both in
terms of the dual optimal value as well as the computational efforts required to
solve the dual problem.

Let us now investigate the relationship between (P ) and (D). For any x̄ ∈ X
and (ū, v̄) ∈ Rm1

+ × Rm2 , we have

inf
x∈X

L(x, ū, v̄) ≤ f(x̄) + Trnsūg(x̄) + v̄Th(x̄) ≤ sup
u≥0

L(x̄,u,v).

This implies that

sup
u≥0

inf
x∈X

L(x,u,v) ≤ inf
x∈X

sup
u≥0

L(x,u,v). (14.17)

In particular, we have the following weak duality theorem, which asserts that the
dual objective value is always a lower bound on the primal objective value:

Theorem 14.2.6. (Weak Duality) Let x̄ be feasible for (P ) and (ū, v̄) be feasible
for (D). Then, we have θ(ū, v̄) ≤ f(x̄). In particular, if v∗d = +∞, then (P ) has
no feasible solution.

Given the primal–dual pair of problems (P ) and (D), the duality gap between
them is defined as ∆ = v∗p − v∗d. By Theorem 14.2.6, we always have ∆ ≥ 0. It
would be nice to have ∆ = 0 (i.e., zero duality gap). However, as the following
example shows, this is not true in general.

Example 14.2.5. Consider the following problem from [1, Example 6.2.2]:

minimize f(x) ≡ −2x1 + x2

subject to h(x) ≡ x1 + x2 − 3 = 0,
x ∈ X,

(14.18)

where X ⊂ R2 is the following discrete set:

X = {(0, 0), (0, 4), (4, 4), (4, 0), (1, 2), (2, 1)} .
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By enumeration, we see that the optimal value of (14.18) is −3, attained at the
point (x1, x2) = (2, 1). Now, one can verify that the Lagrangian function is given
by

θ(v) = min
x∈X
{−2x1 + x2 + v(x1 + x2 − 3)}

=


−4 + 5v for v ≤ −1,
−8 + v for − 1 ≤ v ≤ 2,
−3v for v ≥ 2.

It follows that maxv θ(v) = −6, which is attained at v = 2. Note that the duality
gap in this example is ∆ = −3− (−6) = 3 > 0. �

The above example raises the important question of when the duality gap is
zero. It turns out that there is a relatively simple answer to this question. Before
we proceed, let us introduce the following definition:

Definition 14.2.1. We say that (x̄, ū, v̄) is a saddle point of the Lagrangian
function L defined in (14.16) if the following conditions are satisfied:

1. x̄ ∈ X,

2. ū ≥ 0, and

3. for all x ∈ X and (u,v) ∈ Rm1 × Rm2 with u ≥ 0, we have

L(x̄,u,v) ≤ L(x̄, ū, v̄) ≤ L(x, ū, v̄).

In particular, observe that (x̄, ū, v̄) is a saddle point of L if x̄ minimizes L over
X when (u,v) is fixed at (ū, v̄), and that (ū, v̄) maximizes L over all (u,v) ∈
Rm1 × Rm2 with u ≥ 0 when x is fixed at x̄.

We are now ready to state the following theorem:

Theorem 14.2.7. (Saddle Point Optimality Conditions) The point (x̄, ū, v̄)
with x̄ ∈ X and ū ≥ 0 is a saddle point of L iff

1. L(x̄, ū, v̄) = minx∈X L(x, ū, v̄),

2. g(x̄) ≤ 0 and h(x̄) = 0, and

3. ūTg(x̄) = 0.

Moreover, the point (x̄, ū, v̄) is a saddle point of L iff x̄ and (ū, v̄) are the optimal
solutions to (P ) and (D), respectively, with f(x̄) = θ(ū, v̄), i.e., there is no duality
gap.
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In other words, the existence of a saddle point (x̄, ū, v̄) of L implies that

inf
x∈X

L(x, ū, v̄) = L(x̄, ū, v̄) = sup
u≥0

L(x̄,u,v),

which in turn implies that

sup
u≥0

inf
x∈X

L(x,u,v) = inf
x∈X

sup
u≥0

L(x,u,v),

i.e., inequality (14.17) holds with equality, and v∗p = v∗d.
Now, if we want to apply Theorem 14.2.7 to certify that the duality gap between

(P ) and (D) is zero, we need to produce a saddle point of the Lagrangian function
L, which is not always an easy task. The following theorem, which is an application
of Sion’s minimax theorem [7] (see [8] for an elementary proof), provides an easy-
to-check sufficient condition for certifying zero duality gap.

Theorem 14.2.8. Let L be the Lagrangian function defined in (14.16). Suppose
that

1. X is a compact convex subset of Rn,

2. (u,v) 7→ L (x,u,v) is continuous and concave on Rm1
+ ×Rm2 for each x ∈ X,

and

3. x 7→ L (x,u,v) is continuous and convex on X for each (u,v) ∈ Rm1
+ ×Rm2 .

Then, we have
sup
u≥0

inf
x∈X

L(x,u,v) = inf
x∈X

sup
u≥0

L(x,u,v).

Let us now illustrate some of the above results with an example.

Example 14.2.6. (Semidefinite Programming) Consider the following stan-
dard form semidefinite programming (SDP):

inf f(Z) ≡ tr (CZ) ,
subject to hj(Z) ≡ bj − tr (ajZ) = 0 for j = 1, . . . ,m,

Z ∈ X ≡ Sn+,
(14.19)

where c,a1, . . . ,am ∈ Rn×n are symmetric matrices, b1, . . . , bm ∈ R and Sn+ is
the set of n × n symmetric positive semidefinite matrices. The Lagrangian dual
associated with (14.19) is given by

sup θ(v) ≡ inf
Z∈Sn+

tr (CZ) +
m∑
j=1

vj(bj − tr (ajZ))

 . (14.20)
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Now, for any fixed v ∈ Rm, we have

θ(v) =


bTv if C−

m∑
j=1

vjaj ∈ Sn+,

−∞ otherwise.

(14.21)

To see this, let UΛUT be the spectral decomposition of C−∑m
j=1 vjaj, and suppose

that Λii < 0 for some i = 1, . . . , n. Consider the matrix Z(α) = αUeiei
TU.

Clearly, we have Z(α) ∈ Sn+ for all α > 0. Moreover, as α→∞, we have

tr

C−
m∑
j=1

vjaj

Z(α)

 = α·tr
(

(UΛUT )(Ueiei
TUT )

)
= α·tr (Λeiei

T
)

= αΛii → −∞,

whence

θ(v) = bTv + inf
Z∈Sn+

tr

C−
m∑
j=1

vjaj

Z

 = −∞.

On the other hand, if C−∑m
j=1 vjaj ∈ Sn+, then we have tr

((
C−∑m

j=1 vjaj

)
Z
)
≥

0 for any Z ∈ Sn+. It follows that θ(v) = bTv in this case (by taking, say, Z = 0).
Now, using (14.21), we see that (14.20) is equivalent to

sup bTv

subject to C−
m∑
j=1

vjaj ∈ Sn+,
(14.22)

which is known as a dual standard form SDP. �

14.3 Application Examples

In the past decade optimization techniques, especially convex optimization tech-
niques, have been widely used in various engineering fields such as industrial en-
gineering, mechanical engineering, and electrical engineering. For electrical engi-
neering in particular, optimization techniques have been applied to solve problems
in communications [9–14], networking [15–19], signal processing [20–22], and even
circuit design [23]. In this section, we briefly go through several examples in com-
munications, networking, and signal processing to illustrate how we could apply
the results introduced in the previous section to solve real-world problems.

Example 14.3.1. (Power Allocation Optimization in Parallel AWGN
Channels) Consider the transmission over n parallel AWGN channels. The ith
channel, i ∈ {1, . . . , n}, is characterized by the channel power gain, hi ≥ 0, and
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the additive Gaussian noise power, σi > 0. Let the transmit power allocated to
the ith channel be denoted by pi ≥ 0. The maximum information rate that can be
reliably transmitted over the ith channel is given by [24]

ri = log
(

1 +
hipi
σi

)
. (14.23)

Given a constraint P on the total transmit power over n channels, i.e.,
∑n
i=1 pi ≤ P ,

we want to optimize the allocated power p1, . . . , pn such that the sum rate of n
channels,

∑n
i=1 ri, is maximized. This problem is thus formulated as

maximize
∑n
i=1 log

(
1 + hipi

σi

)
subject to

∑n
i=1 pi ≤ P,

pi ≥ 0 for i = 1, . . . , n.

(14.24)

For convenience, we rewrite the above problem equivalently as

minimize f(p) ≡ −∑n
i=1 log

(
1 + hipi

σi

)
subject to h(p) ≡∑n

i=1 pi − P ≤ 0,
gi(p) ≡ −pi ≤ 0 for i = 1, . . . , n,
p ∈ Rn,

(14.25)

where p = [p1, . . . , pn]T . It is easy to verify that f(p) is convex, and h(p),
g1(p), . . . , gn(p) are all affine and thus convex. According to Theorem 14.2.5,
if we can find a set of feasible solutions p̄ = [p̄1, . . . , p̄n]T ∈ Rn for the above
constrained minimization problem as well as a set of u ≥ 0 and vi ≥ 0, i = 1, . . . , n
such that the following KKT conditions are satisfied,

∇f(p̄) + u∇h(p̄) +
n∑
i=1

vi∇gi(p̄) = 0, (a)

uh(p̄) = 0, (b)

vigi(p̄) = 0 for i = 1, . . . , n, (c)

(14.26)

then we can claim that p̄ is a global minimum for this problem. Suppose that
u > 0. From (b), it follows that h(p̄) = 0, i.e.,

∑n
i=1 p̄i = P . From (a), it follows

that
p̄i =

1
u− vi −

σi
hi

for i = 1, . . . , n. (14.27)

Suppose that p̄i > 0. From (c), it follows that vi = 0. Then from (14.27), it follows
that p̄i = 1

u − σi
hi
> 0. Clearly, if this inequality holds, the corresponding p̄i will

satisfy both (a) and (c). Otherwise, the preassumption of p̄i > 0 cannot be true
and the only feasible value for p̄i is p̄i = 0. In this case, since 1

u − σi
hi
≤ 0, we
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can always find a vi ≥ 0 such that p̄i = 0 holds in (14.27). To summarize, for any
u > 0, the set of feasible values for p̄i that satisfy both (a) and (c) are given by

p̄i =
(

1
u
− σi
hi

)+

for i = 1, . . . , n, (14.28)

where (x)+ = max(0, x) for x ∈ R. Furthermore, recall that this set of p̄i’s need
to satisfy

∑n
i=1 p̄i = P , i.e.,

n∑
i=1

(
1
u
− σi
hi

)+

= P. (14.29)

Note that for any P > 0, in the above equation there exists a unique positive root
of u (which can be found numerically by a simple bisection search over the interval
0 < u < maxi(hi/σi)). With the root of u, the corresponding p̄i’s given in (14.28)
satisfy all the KKT conditions in (a), (b), and (c), and are thus the global optimal
solutions for Problem (14.25). It is worth noting that the structure for the optimal
power allocation in (14.28) is known as the “water-filling” solution [24]. �

Example 14.3.2. (Transmit Optimization for MIMO AWGN Channels
with Per-Antenna Power Constraints) Consider the transmission over a
MIMO AWGN channel with n transmitting antennas and m receiving antennas.
The propagation channel from the transmitter to the receiver is represented by
a real matrix, H ∈ Rm×n, in which all the columns are assumed to be “non-
empty”, i.e., there is at least one element in each column being non-zero. The
additive noises at m receiving antennas are assumed to be i.i.d. Gaussian random
variables with zero mean and unit variance. The transmit signals from the ith
antenna, i ∈ {1, . . . , n}, are denoted by xi(t) ∈ R, t = 0, 1, . . ., which are subject
to a per-antenna average power constraint Pi, i.e., E

{
(xi(t))

2
}
≤ Pi, where E {·}

denotes the expectation. Let Z ∈ Sn+ denote the transmit covariance matrix, i.e.,

Z = E
{

x(t) (x(t))T
}

, where x(t) = [x1(t), . . . , xn(t)]T . The set of per-antenna
transmit power constraints can then be expressed as

tr (AiZ) ≤ Pi for i = 1, . . . , n, (14.30)

where Ai ∈ Rn×n is a matrix with all zero elements expect for the ith diagonal
element being one.

For any transmit covariance matrix Z ∈ Sn+, the maximum transmit rate over
the MIMO AWGN channel is given by [25]

r = log det
(
I + HZHT

)
, (14.31)

where I denotes an identity matrix. The problem of our interest here is to maximize
the rate r over Z ∈ Sn+ subject to the set of per-antenna transmit power constraints,
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which can be equivalently formulated as

v∗p = minimize f(Z) ≡ − log det
(
I + HZHT

)
subject to gi(Z) ≡ tr (AiZ)− Pi ≤ 0 for i = 1, . . . , n,

Z ∈ Sn+.

(14.32)

In the following, we apply the Lagrangian duality to solve the above problem. The
Lagrangian function for this problem is given by

L(Z,u) = f(Z) +
n∑
i=1

uigi(Z) = − log det
(
I + HZHT

)
+

n∑
i=1

ui(tr (AiZ)− Pi),
(14.33)

where u = [u1, . . . , un]T ∈ Rn+. The Lagrangian dual problem associated with
problem (14.32) is then given by

v∗d = maximize θ(u) ≡ minZ∈Sn+
L(Z,u)

subject to u ≥ 0.
(14.34)

It can be verified that the conditions listed in Theorem 14.2.8 are all satisfied for
the Lagrangian function L(Z,u) given in (14.33). We thus conclude that v∗p = v∗d,
i.e., the duality gap for Problem (14.32) is zero. Accordingly, we can solve this
problem equivalently by solving its dual problem (14.34), as shown next.

First, we solve the minimization problem in (14.34) to obtain the dual function
θ(u) for any given u ≥ 0. Observe that θ(u) can be explicitly written as

θ(u) = min
Z∈Sn+

− log det
(
I + HZHT

)
+ tr (AuZ)−

n∑
i=1

uiPi (14.35)

where Au =
∑n
i=1 uiAi is a diagonal matrix with the ith diagonal element equal to

ui, i = 1, . . . , n. Note that for the minimization problem in the above, the optimal
solution for Z is independent of the term

∑n
i=1 uiPi, which thus can be ignored.

To solve this minimization problem, we first observe that if any diagonal element
in Au, say, ui, i ∈ {1, . . . , n}, is equal to zero, then the minimum value for this
problem becomes −∞, which is attained by, e.g., taking Z = α1i1Ti , where 1i
denotes an n × 1 vector with all zero elements except for the ith element being
one, and letting α→∞. Next, we consider the case where all ui’s are greater than
zero. In this case, Au is full-rank and thus its inverse exists. By defining a new
variable Z̄ = A1/2

u ZA1/2
u ∈ Sn+ and using the fact that tr (AB) = tr (BA), the

minimization problem in (14.35) can be rewritten as

min
Z̄∈Sn+

− log det
(
I + HA−1/2

u Z̄A−1/2
u HT

)
+ tr

(
Z̄
)
. (14.36)

Let the SVD of HA−1/2
u be denoted by

HA−1/2
u = UΛVT , (14.37)
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where U ∈ Rm×m and V ∈ Rn×n are unitary matrices, and Λ ∈ Rm×n is a diagonal
matrix with the diagonal elements being denoted by λ1, . . . , λk, k = min(m,n),
and λi ≥ 0, i = 1, . . . , k. Substituting (14.37) into (14.36) and using the fact that
log det (I + AB) = log det (I + BA) yield

min
Z̄∈Sn+

− log det
(
I + ΛVT Z̄VΛT

)
+ tr

(
Z̄
)
. (14.38)

By letting Ẑ = VT Z̄V and using the fact that tr
(
Ẑ
)

= tr
(
Z̄
)

, we obtain an
equivalent problem of (14.38) as

min
Ẑ∈Sn+

− log det
(
I + ΛẐΛT

)
+ tr

(
Ẑ
)
. (14.39)

Recall the Hadamard’s inequality [24], which states that for any X ∈ Sm+ , det (X) ≤∏m
i=1 Xii, iff X is a diagonal matrix, where Xii denotes the ith diagonal element

of X, i = 1, . . . ,m. Applying this result to Problem (14.39), it follows that the
minimum value for this problem is attained iff Ẑ is a diagonal matrix. Let the
diagonal elements of Ẑ be denoted by p1, . . . , pn. Since Ẑ ∈ Sn+, problem (14.39)
can be simplified as

minimize −∑n
i=1 log(1 + λ2

i pi) +
∑n
i=1 pi

subject to pi ≥ 0 for i = 1, . . . , n.
(14.40)

Note that in the above problem, for convenience we have assumed that λi = 0,
for i = k + 1, . . . , n. Similar to Exercise 14.3.1, the global minimum for the above
problem can be shown to be the following water-filling solution:

pi =
(

1− 1
λ2
i

)+

for i = 1, . . . , n. (14.41)

To summarize, for any given u > 0, the optimal solution for the minimization
problem in (14.35) is given by

Zu = A−1/2
u VẐVTA−1/2

u , (14.42)

where Ẑ is a diagonal matrix with the diagonal elements given in (14.41). Moreover,
the dual function θ(u) in (14.35) can be simplified to be

θ(u) =

{
−∑k

i=1

(
log(λ2

i )
)+ +

∑k
i=1

(
1− 1

λ2
i

)+

−∑n
i=1 uiPi if u > 0

−∞ otherwise,
(14.43)

where λ1, . . . , λk are related to u via (14.37).
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Next, we solve the dual problem (14.34) by maximizing the dual function θ(u)
in (14.43) over u ≥ 0. The corresponding dual optimal solution of u then leads
to the optimal solution of Zu in (14.42) for the primal problem (14.32). Since
v∗d = v∗p ≥ 0, in fact we only need to consider the maximization of θ(u) over u > 0
in (14.43). However, due to the coupled structure of λi’s and ui’s shown in (14.37),
it is not evident whether θ(u) in (14.43) is differentiable over ui’s for u > 0. As a
result, conventional decent methods to find the global minimum for differentiable
convex functions such as Newton’s method are ineffective for our problem at hand.
Thus, we resort to an alternative method, known as subgradient based method,
to handle the non-differentiable function θ(u). First, we introduce the definition
of subgradient for an arbitrary real-valued function z(x) defined over a nonempty
convex set S ⊂ Rn. We assume that z(x) has a finite maximum. However, z(x)
need not be continuously differentiable nor have an analytical expression for its
differential. In this case, a vector v ∈ Rn is called the subgradient of z(x) at point
x = x0 if for any x ∈ S, the following inequality holds:

z(x) ≤ z(x0) + vT (x− x0). (14.44)

If at any point x ∈ S a corresponding subgradient v for z(x) is attainable, then
the maximum of z(x) can be found via an iterative search over x ∈ S based on
v (see, e.g., the ellipsoid method [26]). Since θ(u) is defined over a convex set
u > 0 and has a finite maximum, the dual problem (14.34) can thus be solved by
a subgradient based method. Next, we show that the subgradient of θ(u) at any
point u > 0 is given by [tr (A1Zu)− P1, . . . , tr (AnZu)− Pn]T , where Zu is given
in (14.42). Suppose that at any two points u > 0 and u′ > 0, θ(u) and θ(u′)
are attained by Z = Zu and Z = Z′u, respectively. Then, we have the following
inequalities:

θ(u′) = L(Z′u,u
′)

= min
Z∈Sn+

L(Z,u′)

≤ L(Zu,u′)

= − log det
(
I + HZuHT

)
+ [tr (A1Zu)− P1, . . . , tr (AnZu)− Pn]u′

= − log det
(
I + HZuHT

)
+ [tr (A1Zu)− P1, . . . , tr (AnZu)− Pn]u

+ [tr (A1Zu)− P1, . . . , tr (AnZu)− Pn](u′ − u)
= L(Zu,u) + [tr (A1Zu)− P1, . . . , tr (AnZu)− Pn](u′ − u)
= θ(u) + [tr (A1Zu)− P1, . . . , tr (AnZu)− Pn](u′ − u),

from which the subgradient of θ(u) follows.
Last, we can verify that the optimal primal and dual solutions, Zu given in
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(14.42) and the corresponding u > 0 satisfy (a) of the following KKT conditions:

∇f(Zu) +
n∑
i=1

ui∇gi(Zu) = 0, (a)

uigi(Zu) = 0 for i = 1, . . . , n, (b)

(14.45)

while since u > 0, from (b) it follows that gi(Zu) = 0, i.e., tr (AiZu) = Pi must
hold for i = 1, . . . , n. Thus, all transmit antennas should transmit with their
maximum power levels with the optimal transmit covariance matrix Zu, which is
consistent with the observation that the subgradient of the dual function θ(u) at
the optimal dual solution of u should vanish to 0. �

Example 14.3.3. (Power Efficient Beamforming in Two-Way Relay Net-
work via SDP Relaxation) In this example, we illustrate how an originally
nonconvex problem can be solved via convex techniques. As shown in Figure 14.1,
we consider a two-way relay channel (TWRC) consisting of two source nodes, S1
and S2, each with a single antenna and a relay node, R, equipped with M antennas,
M ≥ 2. It is assumed that the transmission protocol of TWRC uses two consec-
utive equal-duration timeslots for one round of information exchange between S1
and S2 via R. During the first timeslot, both S1 and S2 transmit concurrently to
R, which linearly processes the received signal and then broadcasts the resulting
signal to S1 and S2 during the second timeslot. It is also assumed that perfect syn-
chronization has been established among S1, S2, and R prior to data transmission.
The received baseband signal at R in the first timeslot is expressed as

yR(n) = h1
√
p1s1(n) + h2

√
p2s2(n) + zR(n) (14.46)

where yR(n) ∈ CM is the received signal vector at symbol index n, n = 1, . . . , N ,
withN denoting the total number of transmitted symbols during one timeslot; h1 ∈
CM and h2 ∈ CM represent the channel vectors from S1 to R and from S2 to R,
respectively, which are assumed to be constant during the two timeslots; s1(n) and
s2(n) are the transmitted symbols from S1 and S2, respectively, with E {|s1(n)|} =
1, E {|s2(n)|} = 1, and |·| denoting the absolute value for a complex number; p1

and p2 denote the transmit powers of S1 and S2, respectively; and zR(n) ∈ CM
is the receiver noise vector, independent over n, and without loss of generality,
it is assumed that zR(n) has a circular symmetric complex Gaussian (CSCG)
distribution with zero mean and identity covariance matrix, denoted by zR(n) ∼
CN (0, I),∀n. Upon receiving the mixed signal from S1 and S2, R processes it with
amplify-and-forward (AF) relay operation, also known as linear analogue relaying,
and then broadcasts the processed signal to S1 and S2 during the second timeslot.
Mathematically, the linear processing (beamforming) operation at the relay can be
concisely represented as

xR(n) = AyR(n), n = 1, . . . , N (14.47)
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L

Time-Slot 1

L

Time-Slot 2

S1

S1

R

R

S2

S2

h1 h2

hT
1 hT

2

Figure 14.1: The two-way multiantenna relay channel.

where xR(n) ∈ CM is the transmitted signal at R, and A ∈ CM×M is the relay
processing matrix.

Note that the transmit power of R can be shown equal to

pR(A) = E
[
tr
(
xR(n)xHR (n)

)]
= ‖Ah1‖22 p1 + ‖Ah2‖22 p2 + tr(AAH). (14.48)

We can assume w.l.o.g. that channel reciprocity holds for TWRC during uplink
and downlink transmissions, i.e., the channels from R to S1 and S2 during the
second timeslot are given as hT1 and hT2 , respectively. Thus, the received signals
at S1 can be written as

y1(n) = hT1 xR(n) + z1(n)
= hT1 Ah1

√
p1s1(n) + hT1 Ah2

√
p2s2(n) + hT1 AzR(n) + z1(n)(14.49)

for n = 1, . . . , N , where z1(n)’s are the independent receiver noise samples at S1,
and it is assumed that z1(n) ∼ CN (0, 1),∀n. Note that on the right-hand side of
(14.49), the first term is the self-interference of S1, while the second term contains
the desired message from S2. Assuming that both hT1 Ah1 and hT1 Ah2 are perfectly
known at S1 via training-based channel estimation prior to data transmission, S1
can first subtract its self-interference from y1(n) and then coherently demodulate
s2(n). The above practice is known as analogue network coding (ANC). From
(14.49), subtracting the self-interference from y1(n) yields

ỹ1(n) = h̃21
√
p2s2(n) + z̃1(n), n = 1, . . . , N (14.50)

where h̃21 = hT1 Ah2, and z̃1(n) ∼ CN (0,
∥∥∥AHh∗1

∥∥∥2

2
+ 1), where ∗ denotes the

complex conjugate. From (14.50), for a given A, the maximum achievable SNR
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for the end-to-end link from S2 to S1 via R, denoted by γ21, is given as

γ21 =

∣∣hT1 Ah2

∣∣2 p2∥∥∥AHh∗1
∥∥∥2

2
+ 1

(14.51)

Similarly, it can be shown that the maximum SNR γ12 for the link from S1 to S2
via R is given as

γ12 =

∣∣hT2 Ah1

∣∣2 p1∥∥∥AHh∗2
∥∥∥2

2
+ 1

. (14.52)

Now we minimize the relay transmission power given in (14.48), under the
constraints that the achievable SNRs γ21 and γ12 over the two directions are above
two target values, γ̄1 and γ̄2. As such, the optimization can be formulated as

minimizeA pR := ‖Ah1‖22 p1 + ‖Ah2‖22 p2 + tr(AAH)

subject to
∣∣hT1 Ah2

∣∣2 ≥ γ̄1

p2

∥∥∥AHh∗1
∥∥∥2

2
+
γ̄1

p2∣∣hT2 Ah1

∣∣2 ≥ γ̄2

p1

∥∥∥AHh∗2
∥∥∥2

2
+
γ̄2

p1
, (14.53)

For the convenience of analysis, we further modify the above problem as follows.
First, let Vec(Q) be a K2 × 1 vector associated with a K × K square matrix
Q = [q1, . . . ,qK ]T , where qk ∈ CK , k = 1, . . . ,K, by the rule of Vec(Q) =[
qT1 , . . . ,q

T
K

]T . Next, with b = Vec(A) and Θ = p1h1hH1 + p2h2hH2 + I, we

can express pR in the objective function of (14.53) as pR = tr
(
AΘAH

)
= ‖Φb‖22,

with Φ = (diag(ΘT ,ΘT ))
1
2 , where diag(A,B) denotes a block-diagonal matrix

with A and B as the diagonal square matrices. Similarly, let f1 = Vec
(
h1hT2

)
and f2 = Vec

(
h2hT1

)
. Then, from (14.53) it follows that

∣∣hT1 Ah2

∣∣2 =
∣∣fT1 b

∣∣2 and∣∣hT2 Ah1

∣∣2 =
∣∣fT2 b

∣∣2. Furthermore, by defining

hi =
[

hi(1, 1) 0 hi(2, 1) 0
0 hi(1, 1) 0 hi(2, 1)

]
, i = 1, 2,

we have
∥∥∥AHh∗i

∥∥∥2

2
= ‖hib‖22 , i = 1, 2. Using the above transformations, (14.53)

can be rewritten as

minimizeb pR := ‖Φb‖22
subject to

∣∣fT1 b
∣∣2 ≥ γ̄1

p2
‖h1b‖22 +

γ̄1

p2∣∣fT2 b
∣∣2 ≥ γ̄2

p1
‖h2b‖22 +

γ̄2

p1
. (14.54)
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The above problem can be shown to be still nonconvex. However, in the following,
we show that the exact optimal solution could be obtained via a relaxed semidefi-
nite programming (SDP) problem.

We first define E0 = ΦHΦ, E1 = p2
γ̄1

f∗1 fT1 − hH1 h1, and E2 = p1
γ̄2

f∗2 fT2 − hH2 h2.
Since standard SDP formulations only involve real variables and constants, we
introduce a new real matrix variable as X = [bR; bI ]× [bR; bI ]

T , where bR =
Re(b) and bI = Im(b) are the real and imaginary parts of b, respectively. To
rewrite the norm representations at (14.54) in terms of X, we need to rewrite E0,
E1, and E2, as expanded matrices F0, F1, and F2, respectively, in terms of their
real and imaginary parts. Specifically, to write out F0, we first define the short
notations ΦR = Re(Φ) and ΦI = Im(Φ); then we have

F0 =
[

ΦT
RΦR + ΦT

I ΦI ΦT
I ΦR −ΦT

RΦI

ΦT
RΦI −ΦT

I ΦR ΦT
RΦR + ΦT

I ΦI

]
.

The expanded matrices F1 and F2 can be generated from E1 and E2 in a similar
way, where the two terms in E1 or E2 could first be expanded separately then
summed together.

As such, problem (14.54) can be equivalently rewritten as

minimizeX pR := tr (F0X)
subject to tr (F1X) ≥ 1, tr (F2X) ≥ 1, X � 0,

rank(X) = 1. (14.55)

The above problem is still not convex given the last rank-one constraint. However,
if we remove such a constraint, this problem is relaxed into a convex SDP problem
as shown below.

minimizeX pR := tr (F0X)
subject to tr (F1X) ≥ 1, tr (F2X) ≥ 1, X � 0. (14.56)

Given the convexity of the above SDP problem, the optimal solution could be effi-
ciently found by various convex optimization methods. Note that SDP relaxation
usually leads to an optimal X for problem (14.56) that is of rank r with r ≥ 1, which
makes it impossible to reconstruct the exact optimal solution for Problem (14.54)
when r > 1. A commonly adopted method in the literature to obtain a feasible
rank-one (but in general suboptimal) solution from the solution of SDP relaxation
is via “randomization” (see, e.g., [27] and references therein). Fortunately, we
show in the following that with the special structure in Problem (14.56), we could
efficiently reconstruct an optimal rank-one solution from its optimal solution that
could be of rank r with r > 1, based on some elegant results derived for SDP
relaxation in [28]. In other words, we could obtain the exact optimal solution for
the nonconvex problem in (14.55) without losing any optimality, and as efficiently
as solving a convex problem.
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Theorem 14.3.1. Assume that an optimal solution X? of rank r > 1 has been
found for Problem (14.56), we could efficiently construct another feasible optimal
solution X?? of rank one, i.e., X?? is the optimal solution for both (14.55) and
(14.56).

Proof: Please refer to [21]. �
Note that the above proof is self-constructive, based on which we could easily

obtain a routine to obtain an optimal rank-one solution for Problem (14.55) from
X?. Then we could map the solution back to obtain an optimal solution for the
problem in (14.53). �

14.4 Exercises

Exercise 14.4.1. Please indicate whether the following sets are convex or not.

1.
{

x : aTx−b
cTx+d

≤ 1; cTx + d < 0
}

;

2. {x : Ax = b, ‖x‖2 = 1};
3. {X : X11a0 +X22a1 � 0,a0 ∈ Sn,a1 ∈ Sn}; (Xij stands for the ijth element

in matrix X)

4.
{
X : aTXa = 1

}
Exercise 14.4.2. Please indicate whether the following functions are convex or
concave or neither.

1. f(x) = supw
{

log
∑n
i=1 e

xi
w

}
;

2. f(x) = −(x1x2x3)1/3, x > 0;

3. f(X) = log det
(
ATXA

)
; X � 0;

4. f(x) = xTAx + 2x− 5, A =
[

0 1
1 0

]
.

Exercise 14.4.3. With the following problem formulation, answer the followup
questions.

minimizex −(x1 + x2)
subject to ‖a1x‖2 ≤ 1,

‖a2x− b2‖2 ≤ 1,

where x = [x1, x2]T , a1 = a2 =
[

1 0
0 1

]
, and b2 = [1, 0]T .
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1. Is this problem convex?

2. Does Slater’s constraint condition hold?

3. What is the optimal solution for this problem? (Hint: Try to solve this
problem graphically if the KKT conditions are hard to solve.)

4. What is the optimal objective value for the dual problem?

5. What is the optimal value for the dual variable associated with the second
constraint?

Exercise 14.4.4. Given the optimization problem shown in Exercise 14.4.3, please
reformulate it as a semidefinite programming (SDP) problem, then derive the dual
problem of the resulting SDP problem.

Exercise 14.4.5. With the following optimization problem, answer the followup
questions.

maximizeP

n∑
i=1

log(1 +
Pi
δi

)

subject to
n∑
i=1

Pi = Ptotal,

P ≥ 0,

where P = [P1, . . . , Pn]T , and δi > 0, i = 1, . . . , n.

1. Is KKT sufficient for us to get the optimal solution for the above problem?

2. Is KKT necessary for the optimal solution?

3. Please write out the KKT conditions for this problem.

4. Please solve the general form of optimal Pi’s.

5. If n = 3, δ1 = 2, δ2 = 10, δ3 = 5, and Ptotal = 10, what are the optimal Pi
values?

Exercise 14.4.6. Let 1 ≤ m ≤ n be integers, and let A be an m × n matrix
with full row rank. Furthermore, let c ∈ Rn and Q ∈ Sn++ be given. Consider the
following optimization problem:

minimize
1
2
xTQx + cTx

subject to Ax = 0.
(14.57)
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1. Explain why the KKT conditions are necessary and sufficient for (14.57).

2. Write down the KKT conditions associated with (14.57). Hence, express the
optimal solution to (14.57) in closed form.

Exercise 14.4.7. Let f : Rn → R be a differentiable convex function. Consider
the following problem:

minimize f(x)
subject to x ≥ 0.

(14.58)

Show that x̄ ∈ Rn is an optimal solution to (14.58) iff it satisfies the following
system:

∇f(x̄) ≥ 0,

x̄ ≥ 0,

x̄T∇f(x̄) = 0.

Exercise 14.4.8. This problem is concerned with finding the minimum-volume
enclosing ellipsoid of a set of vectors.

1. Let u ∈ Rn be fixed, and define the function g : Sn → R+ by g(X) = ‖Xu‖22.
Find ∇g(X).

2. Let V =
{
v1, . . . ,vm

} ⊂ Rn be a set of vectors that span Rn. Consider the
following problem:

inf − log det (X)

subject to
∥∥Xvi

∥∥2

2
≤ 1 i = 1, . . . ,m,

X ∈ Sn++.

(14.59)

Let X̄ be an optimal solution to (14.59) (it can be shown that such an X̄
exists). Write down the KKT conditions that X̄ must satisfy.

3. Suppose that m = n and vi = ei for i = 1, . . . , n, where ei is the i–th
standard basis vector. Using the above result, determine the optimal solution
to (14.59) and find the corresponding Lagrange multipliers.

Exercise 14.4.9. Let a ∈ Rn, b ∈ R and c ∈ Rn be such that a, c > 0 and b > 0.
Consider the following problem:

minimize
n∑
i=1

ci
xi

subject to
n∑
i=1

aixi = b,

x ≥ 0.

(14.60)
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1. Let u1 ∈ R and u2 ∈ Rn be the Lagrange multipliers associated with the
equality and inequality constraints, respectively. Write down the KKT con-
ditions associated with (14.60).

2. Give explicit expressions for x̄ ∈ Rn, ū1 ∈ R and ū2 ∈ Rn such that
(x̄, ū1, ū2) satisfies the KKT conditions above.

3. Is the solution x̄ ∈ Rn found above an optimal solution to (14.60)? Explain.
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